Which square is bigger? Honeybees see visual illusions like humans do

2VPJ...k5j4
8 May 2024
23

It’s intriguing that some species view size illusions the same way as us, and some animals do not. Why is it that a baboon does not see any illusion when looking at the Ebbinghaus Illusion? Why do pigeons and dogs see the opposite illusion to us? Our team decided to look into the methodology of the past studies that had shown these differences.

When baboons, pigeons, dogs, and bantams were tested, they were looking at the illusion from either a set distance or from a forced close-range distance. For example, dogs had to touch the correct option with their noses, and birds had to peck the correct option meaning these species were viewing the illusion at a very close distance. Baboons, on the other hand, were viewing the illusion at a set distance, unable to move closer than a certain distance from a screen that presented the illusionary pictures.

With this knowledge, we decided to test honeybees using two study conditions:

a free-flying set-up where bees could fly at any distance from the size illusion before making decisions, and
a constrained viewing set-up where bees could only view and make decisions about the illusion from one set distance.
How does a bee view size illusions?
To determine if bees could perceive size illusions, we first had to find a way to ask them.

We trained one group of bees to always choose the larger black square on a square white background and another group of bees to always choose the smaller black square on a square white background.

When bees had learnt to either choose larger or smaller sized black square targets, we manipulated the size of the background, thus trying to induce the perception of a visual illusion (similar to the Delboeuf Illusion)When a human looks at a distant skyscraper, it appears small to the eye. It’s a visual illusion, and we use other contextual information to know the building is actually tall.

Our new study shows, for the first time, that honeybees see size-based visual illusions too. Whether a size illusion is seen, or not, depends on how a target object is viewed.

These new results help us understand how visual illusions evolved in different species over time.

Read more: Three visual illusions that reveal the hidden workings of the brain

How humans experience illusions
Humans see lots of different illusions such as mirages, illusions of shape, length, size, and even colour (remember that dress?).


The lines or shapes around an object can change the way your brain sees it. Provided by Scarlett Howard
Visual illusions are errors in your own perception which can allow you to process the very complex visual information you see more easily.

One of the strongest geometric illusions we humans see is an illusion of size, called the Ebbinghaus Illusion.


Ebbinghaus Illusion: The central circles are of identical size, but are perceived as very different by humans because we use context to inform our vision. Provided by Scarlett Howard
Interestingly, species such as bottlenose dolphins, bower birds, domestic chicks, and redtail splitfins see this illusion in the same way as humans. However, animals such pigeons, domestic dogs, and bantams see the opposite illusion to what we see, and baboons do not see an illusion at all.

To understand why different species see size illusions in such different ways, and how an insect with a miniature brain might view a size illusion, we developed an experimental design using honeybees.

Read more: Want a better camera? Just copy bees and their extra light-sensing eyes It’s intriguing that some species view size illusions the same way as us, and some animals do not. Why is it that a baboon does not see any illusion when looking at the Ebbinghaus Illusion? Why do pigeons and dogs see the opposite illusion to us? Our team decided to look into the methodology of the past studies that had shown these differences.

When baboons, pigeons, dogs, and bantams were tested, they were looking at the illusion from either a set distance or from a forced close-range distance. For example, dogs had to touch the correct option with their noses, and birds had to peck the correct option meaning these species were viewing the illusion at a very close distance. Baboons, on the other hand, were viewing the illusion at a set distance, unable to move closer than a certain distance from a screen that presented the illusionary pictures.

With this knowledge, we decided to test honeybees using two study conditions:

a free-flying set-up where bees could fly at any distance from the size illusion before making decisions, and
a constrained viewing set-up where bees could only view and make decisions about the illusion from one set distance.
How does a bee view size illusions?
To determine if bees could perceive size illusions, we first had to find a way to ask them.

We trained one group of bees to always choose the larger black square on a square white background and another group of bees to always choose the smaller black square on a square white background.

When bees had learnt to either choose larger or smaller sized black square targets, we manipulated the size of the background, thus trying to induce the perception of a visual illusion (similar to the DelboeuWhen a human looks at a distant skyscraper, it appears small to the eye. It’s a visual illusion, and we use other contextual information to know the building is actually tall.

Our new study shows, for the first time, that honeybees see size-based visual illusions too. Whether a size illusion is seen, or not, depends on how a target object is viewed.

These new results help us understand how visual illusions evolved in different species over time.

Read more: Three visual illusions that reveal the hidden workings of the brain

How humans experience illusions
Humans see lots of different illusions such as mirages, illusions of shape, length, size, and even colour (remember that dress?).


The lines or shapes around an object can change the way your brain sees it. Provided by Scarlett Howard
Visual illusions are errors in your own perception which can allow you to process the very complex visual information you see more easily.

One of the strongest geometric illusions we humans see is an illusion of size, called the Ebbinghaus Illusion.


Ebbinghaus Illusion: The central circles are of identical size, but are perceived as very different by humans because we use context to inform our vision. Provided by Scarlett Howard
Interestingly, species such as bottlenose dolphins, bower birds, domestic chicks, and redtail splitfins see this illusion in the same way as humans. However, animals such pigeons, domestic dogs, and bantams see the opposite illusion to what we see, and baboons do not see an illusion at all.

To understand why different species see size illusions in such different ways, and how an insect with a miniature brain might view a size illusion, we developed an experimental design using honeybees.

Read more: Want a better camera? Just copy bees and their exIt’s intriguing that some species view size illusions the same way as us, and some animals do not. Why is it that a baboon does not see any illusion when looking at the Ebbinghaus Illusion? Why do pigeons and dogs see the opposite illusion to us? Our team decided to look into the methodology of the past studies that had shown these differences.

When baboons, pigeons, dogs, and bantams were tested, they were looking at the illusion from either a set distance or from a forced close-range distance. For example, dogs had to touch the correct option with their noses, and birds had to peck the correct option meaning these species were viewing the illusion at a very close distance. Baboons, on the other hand, were viewing the illusion at a set distance, unable to move closer than a certain distance from a screen that presented the illusionary pictures.

With this knowledge, we decided to test honeybees using two study conditions:

a free-flying set-up where bees could fly at any distance from the size illusion before making decisions, and
a constrained viewing set-up where bees could only view and make decisions about the illusion from one set distance.
How does a bee view size illusions?
To determine if bees could perceive size illusions, we first had to find a way to ask them.

We trained one group of bees to always choose the larger black square on a square white background and another group of bees to always choose the smaller black square on a square white background.

When bees had learnt to either choose larger or smaller sized black square targets, we manipulated the size of the background, thus trying to induce the perception of a visual illusion (similar to the DelboeuWhen a human looks at a distant skyscraper, it appears small to the eye. It’s a visual illusion, and we use other contextual information to know the building is actually tall.

Our new study shows, for the first time, that honeybees see size-based visual illusions too. Whether a size illusion is seen, or not, depends on how a target object is viewed.

These new results help us understand how visual illusions evolved in different species over time.

Read more: Three visual illusions that reveal the hidden workings of the brain

How humans experience illusions
Humans see lots of different illusions such as mirages, illusions of shape, length, size, and even colour (remember that dress?).


The lines or shapes around an object can change the way your brain sees it. Provided by Scarlett Howard
Visual illusions are errors in your own perception which can allow you to process the very complex visual information you see more easily.

One of the strongest geometric illusions we humans see is an illusion of size, called the Ebbinghaus Illusion.


Ebbinghaus Illusion: The central circles are of identical size, but are perceived as very different by humans because we use context to inform our vision. Provided by Scarlett Howard
Interestingly, species such as bottlenose dolphins, bower birds, domestic chicks, and redtail splitfins see this illusion in the same way as humans. However, animals such pigeons, domestic dogs, and bantams see the opposite illusion to what we see, and baboons do not see an illusion at all.

To understand why different species see size illusions in such different ways, and how an insect with a miniature brain might view a size illusion, we developed an experimental design using honeybees.

Read more: Want a better camera? Just copy bees and their exIt’s intriguing that some species view size illusions the same way as us, and some animals do not. Why is it that a baboon does not see any illusion when looking at the Ebbinghaus Illusion? Why do pigeons and dogs see the opposite illusion to us? Our team decided to look into the methodology of the past studies that had shown these differences.

When baboons, pigeons, dogs, and bantams were tested, they were looking at the illusion from either a set distance or from a forced close-range distance. For example, dogs had to touch the correct option with their noses, and birds had to peck the correct option meaning these species were viewing the illusion at a very close distance. Baboons, on the other hand, were viewing the illusion at a set distance, unable to move closer than a certain distance from a screen that presented the illusionary pictures.

With this knowledge, we decided to test honeybees using two study conditions:

a free-flying set-up where bees could fly at any distance from the size illusion before making decisions, and
a constrained viewing set-up where bees could only view and make decisions about the illusion from one set distance.
How does a bee view size illusions?
To determine if bees could perceive size illusions, we first had to find a way to ask them.

We trained one group of bees to always choose the larger black square on a square white background and another group of bees to always choose the smaller black square on a square white background.

When bees had learnt to either choose larger or smaller sized black square targets, we manipulated the size of the background, thus trying to induce the perception of a visual illusion (similar to the DelboeuWhen a human looks at a distant skyscraper, it appears small to the eye. It’s a visual illusion, and we use other contextual information to know the building is actually tall.

Our new study shows, for the first time, that honeybees see size-based visual illusions too. Whether a size illusion is seen, or not, depends on how a target object is viewed.

These new results help us understand how visual illusions evolved in different species over time.

Read more: Three visual illusions that reveal the hidden workings of the brain

How humans experience illusions
Humans see lots of different illusions such as mirages, illusions of shape, length, size, and even colour (remember that dress?).


The lines or shapes around an object can change the way your brain sees it. Provided by Scarlett Howard
Visual illusions are errors in your own perception which can allow you to process the very complex visual information you see more easily.

One of the strongest geometric illusions we humans see is an illusion of size, called the Ebbinghaus Illusion.


Ebbinghaus Illusion: The central circles are of identical size, but are perceived as very different by humans because we use context to inform our vision. Provided by Scarlett Howard
Interestingly, species such as bottlenose dolphins, bower birds, domestic chicks, and redtail splitfins see this illusion in the same way as humans. However, animals such pigeons, domestic dogs, and bantams see the opposite illusion to what we see, and baboons do not see an illusion at all.

To understand why different species see size illusions in such different ways, and how an insect with a miniature brain might view a size illusion, we developed an experimental design using honeybees.

Read more: Want a better camera? Just copy bees and their exIt’s intriguing that some species view size illusions the same way as us, and some animals do not. Why is it that a baboon does not see any illusion when looking at the Ebbinghaus Illusion? Why do pigeons and dogs see the opposite illusion to us? Our team decided to look into the methodology of the past studies that had shown these differences.

When baboons, pigeons, dogs, and bantams were tested, they were looking at the illusion from either a set distance or from a forced close-range distance. For example, dogs had to touch the correct option with their noses, and birds had to peck the correct option meaning these species were viewing the illusion at a very close distance. Baboons, on the other hand, were viewing the illusion at a set distance, unable to move closer than a certain distance from a screen that presented the illusionary pictures.

With this knowledge, we decided to test honeybees using two study conditions:

a free-flying set-up where bees could fly at any distance from the size illusion before making decisions, and
a constrained viewing set-up where bees could only view and make decisions about the illusion from one set distance.
How does a bee view size illusions?
To determine if bees could perceive size illusions, we first had to find a way to ask them.

We trained one group of bees to always choose the larger black square on a square white background and another group of bees to always choose the smaller black square on a square white background.

When bees had learnt to either choose larger or smaller sized black square targets, we manipulated the size of the background, thus trying to induce the perception of a visual illusion (similar to the DelboeuWhen a human looks at a distant skyscraper, it appears small to the eye. It’s a visual illusion, and we use other contextual information to know the building is actually tall.

Our new study shows, for the first time, that honeybees see size-based visual illusions too. Whether a size illusion is seen, or not, depends on how a target object is viewed.

These new results help us understand how visual illusions evolved in different species over time.

Read more: Three visual illusions that reveal the hidden workings of the brain

How humans experience illusions
Humans see lots of different illusions such as mirages, illusions of shape, length, size, and even colour (remember that dress?).


The lines or shapes around an object can change the way your brain sees it. Provided by Scarlett Howard
Visual illusions are errors in your own perception which can allow you to process the very complex visual information you see more easily.

One of the strongest geometric illusions we humans see is an illusion of size, called the Ebbinghaus Illusion.


Ebbinghaus Illusion: The central circles are of identical size, but are perceived as very different by humans because we use context to inform our vision. Provided by Scarlett Howard
Interestingly, species such as bottlenose dolphins, bower birds, domestic chicks, and redtail splitfins see this illusion in the same way as humans. However, animals such pigeons, domestic dogs, and bantams see the opposite illusion to what we see, and baboons do not see an illusion at all.

To understand why different species see size illusions in such different ways, and how an insect with a miniature brain might view a size illusion, we developed an experimental design using honeybees.

Read more: Want a better camera? Just copy bees and their exIt’s intriguing that some species view size illusions the same way as us, and some animals do not. Why is it that a baboon does not see any illusion when looking at the Ebbinghaus Illusion? Why do pigeons and dogs see the opposite illusion to us? Our team decided to look into the methodology of the past studies that had shown these differences.

When baboons, pigeons, dogs, and bantams were tested, they were looking at the illusion from either a set distance or from a forced close-range distance. For example, dogs had to touch the correct option with their noses, and birds had to peck the correct option meaning these species were viewing the illusion at a very close distance. Baboons, on the other hand, were viewing the illusion at a set distance, unable to move closer than a certain distance from a screen that presented the illusionary pictures.

With this knowledge, we decided to test honeybees using two study conditions:

a free-flying set-up where bees could fly at any distance from the size illusion before making decisions, and
a constrained viewing set-up where bees could only view and make decisions about the illusion from one set distance.
How does a bee view size illusions?
To determine if bees could perceive size illusions, we first had to find a way to ask them.

We trained one group of bees to always choose the larger black square on a square white background and another group of bees to always choose the smaller black square on a square white background.

When bees had learnt to either choose larger or smaller sized black square targets, we manipulated the size of the background, thus trying to induce the perception of a visual illusion (similar to the Delboeuf Illusion). tra light-sensing eyes f Illusion). tra light-sensing eyes f Illusion). tra light-sensing eyes f Illusion). tra light-sensing eyes f Illusion). When a human looks at a distant skyscraper, it appears small to the eye. It’s a visual illusion, and we use other contextual information to know the building is actually tall.

Our new study shows, for the first time, that honeybees see size-based visual illusions too. Whether a size illusion is seen, or not, depends on how a target object is viewed.

These new results help us understand how visual illusions evolved in different species over time.

Read more: Three visual illusions that reveal the hidden workings of the brain

How humans experience illusions
Humans see lots of different illusions such as mirages, illusions of shape, length, size, and even colour (remember that dress?).


The lines or shapes around an object can change the way your brain sees it. Provided by Scarlett Howard
Visual illusions are errors in your own perception which can allow you to process the very complex visual information you see more easily.

One of the strongest geometric illusions we humans see is an illusion of size, called the Ebbinghaus Illusion.


Ebbinghaus Illusion: The central circles are of identical size, but are perceived as very different by humans because we use context to inform our vision. Provided by Scarlett Howard
Interestingly, species such as bottlenose dolphins, bower birds, domestic chicks, and redtail splitfins see this illusion in the same way as humans. However, animals such pigeons, domestic dogs, and bantams see the opposite illusion to what we see, and baboons do not see an illusion at all.

To understand why different species see size illusions in such different ways, and how an insect with a miniature brain might view a size illusion, we developed an experimental design using honeybees.

Read more: Want a better camera? Just copy bees and their extra light-sensing eyes .

Write & Read to Earn with BULB

Learn More

Enjoy this blog? Subscribe to Milon boss

0 Comments

B
No comments yet.
Most relevant comments are displayed, so some may have been filtered out.