12 Feb 2024


For other uses, see Bird (disambiguation). "Birds", "Aves", and "Avifauna" redirect here. For other uses, see Birds (disambiguation)Aves (disambiguation), and Avifauna (disambiguation).
Temporal range:
Late Cretaceous – present, 72–0 Ma[1][2] PreꞒ











Possible Early Cretaceous or early Late Cretaceous origin based on molecular clock[3][4][5]

Scientific classification

Birds are a group of warm-blooded vertebrates constituting the class Aves (/ˈeɪviːz/), characterised by feathers, toothless beaked jaws, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart, and a strong yet lightweight skeleton. Birds live worldwide and range in size from the 5.5 cm (2.2 in) bee hummingbird to the 2.8 m (9 ft 2 in) common ostrich. There are over 11,000 living species, more than half of which are passerine, or "perching" birds. Birds have wings whose development varies according to species; the only known groups without wings are the extinct moa and elephant birds. Wings, which are modified forelimbs, gave birds the ability to fly, although further evolution has led to the loss of flight in some birds, including ratitespenguins, and diverse endemic island species. The digestive and respiratory systems of birds are also uniquely adapted for flight. Some bird species of aquatic environments, particularly seabirds and some waterbirds, have further evolved for swimming. The study of birds is called ornithology.
Birds are feathered theropod dinosaurs and constitute the only known living dinosaurs. Likewise, birds are considered reptiles in the modern cladistic sense of the term, and their closest living relatives are the crocodilians. Birds are descendants of the primitive avialans (whose members include Archaeopteryx) which first appeared during the Late Jurassic. According to recent estimates, modern birds (Neornithes) evolved in the Late Cretaceous and diversified dramatically around the time of the Cretaceous–Paleogene extinction event 66 million years ago, which killed off the pterosaurs and all non-avian dinosaurs.[7]
Many social species pass on knowledge across generations, which is considered a form of culture. Birds are social, communicating with visual signals, calls, and songs, and participating in such behaviours as cooperative breeding and hunting, flocking, and mobbing of predators. The vast majority of bird species are socially (but not necessarily sexually) monogamous, usually for one breeding season at a time, sometimes for years, and rarely for life. Other species have breeding systems that are polygynous (one male with many females) or, rarely, polyandrous (one female with many males). Birds produce offspring by laying eggs which are fertilised through sexual reproduction. They are usually laid in a nest and incubated by the parents. Most birds have an extended period of parental care after hatching.
Many species of birds are economically important as food for human consumption and raw material in manufacturing, with domesticated and undomesticated birds being important sources of eggs, meat, and feathers. Songbirds, parrots, and other species are popular as pets. Guano (bird excrement) is harvested for use as a fertiliser. Birds figure throughout human culture. About 120 to 130 species have become extinct due to human activity since the 17th century, and hundreds more before then. Human activity threatens about 1,200 bird species with extinction, though efforts are underway to protect them. Recreational birdwatching is an important part of the ecotourism industry.

Evolution and classification

Main article: Evolution of birds
Archaeopteryx is often considered the oldest known true bird.
The first classification of birds was developed by Francis Willughby and John Ray in their 1676 volume Ornithologiae.[8] Carl Linnaeus modified that work in 1758 to devise the taxonomic classification system currently in use.[9] Birds are categorised as the biological class Aves in Linnaean taxonomyPhylogenetic taxonomy places Aves in the clade Theropoda.[10]


Aves and a sister group, the order Crocodilia, contain the only living representatives of the reptile clade Archosauria. During the late 1990s, Aves was most commonly defined phylogenetically as all descendants of the most recent common ancestor of modern birds and Archaeopteryx lithographica.[11] However, an earlier definition proposed by Jacques Gauthier gained wide currency in the 21st century, and is used by many scientists including adherents to the PhyloCode. Gauthier defined Aves to include only the crown group of the set of modern birds. This was done by excluding most groups known only from fossils, and assigning them, instead, to the broader group Avialae,[12] on the principle that a clade based on extant species should be limited to those extant species and their closest extinct relatives.[12]
Gauthier and de Queiroz identified four different definitions for the same biological name "Aves", which is a problem.[13] The authors proposed to reserve the term Aves only for the crown group consisting of the last common ancestor of all living birds and all of its descendants,[13] which corresponds to meaning number 4 below. They assigned other names to the other groups.[13]
Reptiles  Squamates    Lizards and snakes
  Archosaurs    Crocodiles
The birds' phylogenetic relationships to major living reptile groups

  1. Aves can mean all archosaurs closer to birds than to crocodiles (alternately Avemetatarsalia)
  2. Aves can mean those advanced archosaurs with feathers (alternately Avifilopluma)
  3. Aves can mean those feathered dinosaurs that fly (alternately Avialae)
  4. Aves can mean the last common ancestor of all the currently living birds and all of its descendants (a "crown group", in this sense synonymous with Neornithes)

Under the fourth definition Archaeopteryx, traditionally considered one of the earliest members of Aves, is removed from this group, becoming a non-avian dinosaur instead. These proposals have been adopted by many researchers in the field of palaeontology and bird evolution, though the exact definitions applied have been inconsistent. Avialae, initially proposed to replace the traditional fossil content of Aves, is often used synonymously with the vernacular term "bird" by these researchers.[14]
Cladogram showing the results of a phylogenetic study by Cau, 2018.[15]
Most researchers define Avialae as branch-based clade, though definitions vary. Many authors have used a definition similar to "all theropods closer to birds than to Deinonychus",[16][17] with Troodon being sometimes added as a second external specifier in case it is closer to birds than to Deinonychus.[18] Avialae is also occasionally defined as an apomorphy-based clade (that is, one based on physical characteristics). Jacques Gauthier, who named Avialae in 1986, re-defined it in 2001 as all dinosaurs that possessed feathered wings used in flapping flight, and the birds that descended from them.[13][19]
Despite being currently one of the most widely used, the crown-group definition of Aves has been criticised by some researchers. Lee and Spencer (1997) argued that, contrary to what Gauthier defended, this definition would not increase the stability of the clade and the exact content of Aves will always be uncertain because any defined clade (either crown or not) will have few synapomorphies distinguishing it from its closest relatives. Their alternative definition is synonymous to Avifilopluma.[20]

Dinosaurs and the origin of birds

Main article: Origin of birds
Cladogram following the results of a phylogenetic study by Cau et al., 2015[21]Simplified phylogenetic tree showing the relationship between modern birds and other dinosaurs[22]
Based on fossil and biological evidence, most scientists accept that birds are a specialised subgroup of theropod dinosaurs[23] and, more specifically, members of Maniraptora, a group of theropods which includes dromaeosaurids and oviraptorosaurs, among others.[24] As scientists have discovered more theropods closely related to birds, the previously clear distinction between non-birds and birds has become blurred. By the 2000s, discoveries in the Liaoning Province of northeast China, which demonstrated many small theropod feathered dinosaurs, contributed to this ambiguity.[25][26][27]
Anchiornis huxleyi is an important source of information on the early evolution of birds in the Late Jurassic period.[28]
The consensus view in contemporary palaeontology is that the flying theropods, or avialans, are the closest relatives of the deinonychosaurs, which include dromaeosaurids and troodontids.[29] Together, these form a group called Paraves. Some basal members of Deinonychosauria, such as Microraptor, have features which may have enabled them to glide or fly. The most basal deinonychosaurs were very small. This evidence raises the possibility that the ancestor of all paravians may have been arboreal, have been able to glide, or both.[30][31] Unlike Archaeopteryx and the non-avialan feathered dinosaurs, who primarily ate meat, studies suggest that the first avialans were omnivores.[32]
The Late Jurassic Archaeopteryx is well known as one of the first transitional fossils to be found, and it provided support for the theory of evolution in the late 19th century. Archaeopteryx was the first fossil to display both clearly traditional reptilian characteristics—teeth, clawed fingers, and a long, lizard-like tail—as well as wings with flight feathers similar to those of modern birds. It is not considered a direct ancestor of birds, though it is possibly closely related to the true ancestor.[33]

Early evolution

See also: List of fossil bird genera
Confuciusornis sanctus, a Cretaceous bird from China that lived 125 million years ago, is the oldest known bird to have a beak.[34]
Over 40% of key traits found in modern birds evolved during the 60 million year transition from the earliest bird-line archosaurs to the first maniraptoromorphs, i.e. the first dinosaurs closer to living birds than to Tyrannosaurus rex. The loss of osteoderms otherwise common in archosaurs and acquisition of primitive feathers might have occurred early during this phase.[15][35] After the appearance of Maniraptoromorpha, the next 40 million years marked a continuous reduction of body size and the accumulation of neotenic (juvenile-like) characteristics. Hypercarnivory became increasingly less common while braincases enlarged and forelimbs became longer.[15] The integument evolved into complex, pennaceous feathers.[35]
The oldest known paravian (and probably the earliest avialan) fossils come from the Tiaojishan Formation of China, which has been dated to the late Jurassic period (Oxfordian stage), about 160 million years ago. The avialan species from this time period include Anchiornis huxleyiXiaotingia zhengi, and Aurornis xui.[14]
The well-known probable early avialan, Archaeopteryx, dates from slightly later Jurassic rocks (about 155 million years old) from Germany. Many of these early avialans shared unusual anatomical features that may be ancestral to modern birds but were later lost during bird evolution. These features include enlarged claws on the second toe which may have been held clear of the ground in life, and long feathers or "hind wings" covering the hind limbs and feet, which may have been used in aerial maneuvering.[36]
Avialans diversified into a wide variety of forms during the Cretaceous period. Many groups retained primitive characteristics, such as clawed wings and teeth, though the latter were lost independently in a number of avialan groups, including modern birds (Aves).[37] Increasingly stiff tails (especially the outermost half) can be seen in the evolution of maniraptoromorphs, and this process culminated in the appearance of the pygostyle, an ossification of fused tail vertebrae.[15] In the late Cretaceous, about 100 million years ago, the ancestors of all modern birds evolved a more open pelvis, allowing them to lay larger eggs compared to body size.[38] Around 95 million years ago, they evolved a better sense of smell.[39]
A third stage of bird evolution starting with Ornithothoraces (the "bird-chested" avialans) can be associated with the refining of aerodynamics and flight capabilities, and the loss or co-ossification of several skeletal features. Particularly significant are the development of an enlarged, keeled sternum and the alula, and the loss of grasping hands. [15]
Cladogram following the results of a phylogenetic study by Cau et al., 2015[21]

Early diversity of bird ancestors

See also: Protobirds and Avialae
Mesozoic bird phylogeny simplified after Wang et al., 2015's phylogenetic analysis[40]Ichthyornis, which lived 93 million years ago, was the first known prehistoric bird relative preserved with teeth.
The first large, diverse lineage of short-tailed avialans to evolve were the Enantiornithes, or "opposite birds", so named because the construction of their shoulder bones was in reverse to that of modern birds. Enantiornithes occupied a wide array of ecological niches, from sand-probing shorebirds and fish-eaters to tree-dwelling forms and seed-eaters. While they were the dominant group of avialans during the Cretaceous period, enantiornithes became extinct along with many other dinosaur groups at the end of the Mesozoic era.[37]
Many species of the second major avialan lineage to diversify, the Euornithes (meaning "true birds", because they include the ancestors of modern birds), were semi-aquatic and specialised in eating fish and other small aquatic organisms. Unlike the Enantiornithes, which dominated land-based and arboreal habitats, most early euornithes lacked perching adaptations and likely included shorebird-like species, waders, and swimming and diving species.[41]
The latter included the superficially gull-like Ichthyornis[42] and the Hesperornithiformes, which became so well adapted to hunting fish in marine environments that they lost the ability to fly and became primarily aquatic.[37] The early euornithes also saw the development of many traits associated with modern birds, like strongly keeled breastbones, toothless, beaked portions of their jaws (though most non-avian euornithes retained teeth in other parts of the jaws).[43] Euornithes also included the first avialans to develop true pygostyle and a fully mobile fan of tail feathers,[44] which may have replaced the "hind wing" as the primary mode of aerial maneuverability and braking in flight.[36]
A study on mosaic evolution in the avian skull found that the last common ancestor of all Neornithes might have had a beak similar to that of the modern hook-billed vanga and a skull similar to that of the Eurasian golden oriole. As both species are small aerial and canopy foraging omnivores, a similar ecological niche was inferred for this hypothetical ancestor.[45]

Diversification of modern birds

See also: Sibley–Ahlquist taxonomy of birds and dinosaur classification
AvesPalaeognathae(ratites and tinamous)
Neognathae Galloanserae (landfowl and waterfowl)
Neoaves(all other birds including perching birds)
Major groups of modern birds based on Sibley-Ahlquist taxonomy
Most studies agree on a Cretaceous age for the most recent common ancestor of modern birds but estimates range from the Early Cretaceous[3][46] to the latest Cretaceous.[47][4] Similarly, there is no agreement on whether most of the early diversification of modern birds occurred in the Cretaceous and associated with breakup of the supercontinent Gondwana or occurred later and potentially as a consequence of the Cretaceous–Palaeogene extinction event.[48] This disagreement is in part caused by a divergence in the evidence; most molecular dating studies suggests a Cretaceous evolutionary radiation, while fossil evidence points to a Cenozoic radiation (the so-called 'rocks' versus 'clocks' controversy).
The discovery of Vegavis from the Maastrichtian, the last stage of the Late Cretaceous proved that the diversification of modern birds started before the Cenozoic era.[49] The affinities of an earlier fossil, the possible galliform Austinornis lentus, dated to about 85 million years ago,[50] are still too controversial to provide a fossil evidence of modern bird diversification. In 2020, Asteriornis from the Maastrichtian was described, it appears to be a close relative of Galloanserae, the earliest diverging lineage within Neognathae.[1]
Attempts to reconcile molecular and fossil evidence using genomic-scale DNA data and comprehensive fossil information have not resolved the controversy.[47][51] However, a 2015 estimate that used a new method for calibrating molecular clocks confirmed that while modern birds originated early in the Late Cretaceous, likely in Western Gondwana, a pulse of diversification in all major groups occurred around the Cretaceous–Palaeogene extinction event.[7] Modern birds would have expanded from West Gondwana through two routes. One route was an Antarctic interchange in the Paleogene. The other route was probably via Paleocene land bridges between South American and North America, which allowed for the rapid expansion and diversification of Neornithes into the Holarctic and Paleotropics.[7] On the other hand, the occurrence of Asteriornis in the Northern Hemisphere suggest that Neornithes dispersed out of East Gondwana before the Paleocene.[1]

Classification of bird orders

See also: List of birds
All modern birds lie within the crown group Aves (alternately Neornithes), which has two subdivisions: the Palaeognathae, which includes the flightless ratites (such as the ostriches) and the weak-flying tinamous, and the extremely diverse Neognathae, containing all other birds.[52] These two subdivisions have variously been given the rank of superorder,[53] cohort,[10] or infraclass.[54] Depending on the taxonomic viewpoint, the number of known living bird species is around 10,906[55][56] although other sources may differ in their precise number.
Cladogram of modern bird relationships based on Braun & Kimball (2021)[57]
AvesPalaeognathaeStruthioniformes (ostrichesRheiformes (rheas) Apterygiformes (kiwis) Tinamiformes (tinamous) Casuariiformes (emu and cassowariesNeognathaeGalloanseraeGalliformes (chickens and relatives) Anseriformes (ducks and relatives) NeoavesMirandornithesPhoenicopteriformes (flamingos)Podicipediformes (grebes)ColumbimorphaeColumbiformes (pigeons and doves) Mesitornithiformes (mesites)Pterocliformes (sandgrouse)PassereaOtidiformes (bustards)Cuculiformes (cuckoos)Musophagiformes (turacos)Gruiformes (rails and cranes)Charadriiformes (waders and relatives)Opisthocomiformes (hoatzin)StrisoresCaprimulgiformes (nightjars) VanescavesNyctibiiformes (potoos) Steatornithiformes (oilbird) Podargiformes (frogmouths) DaedalornithesAegotheliformes (owlet-nightjars) Apodiformes (swiftstreeswifts and hummingbirdsPhaethoquornithesEurypygimorphaePhaethontiformes (tropicbirds)Eurypygiformes (sunbittern and kagu)AequornithesGaviiformes[58] (loonsAustrodyptornithesProcellariiformes (albatrosses and petrelsSphenisciformes (penguins) Ciconiiformes (storks) Suliformes (boobiescormorants, etc.) Pelecaniformes (pelicansherons and ibises(Ardeae)TelluravesAccipitrimorphaeCathartiformes (New World vultures)Accipitriformes (hawks and relatives)Strigiformes (owls)CoraciimorphaeColiiformes (mousebirds) CavitavesLeptosomiformes (cuckoo roller) Trogoniformes (trogons and quetzals)PicocoraciaeBucerotiformes (hornbills and relatives) PicodynastornithesCoraciiformes (kingfishers and relatives)Piciformes (woodpeckers and relatives) AustralavesCariamiformes (seriemas)EufalconimorphaeFalconiformes (falcons)PsittacopasseraePsittaciformes (parrots)Passeriformes (passerines)The classification of birds is a contentious issue. Sibley and Ahlquist's Phylogeny and Classification of Birds (1990) is a landmark work on the subject.[59] Most evidence seems to suggest the assignment of orders is accurate,[60] but scientists disagree about the relationships among the orders themselves; evidence from modern bird anatomy, fossils and DNA have all been brought to bear on the problem, but no strong consensus has emerged. Fossil and molecular evidence from the 2010s is providing an increasingly clear picture of the evolution of modern bird orders.[47][51]


See also: list of sequenced animal genomes
As of 2010, the genome had been sequenced for only two birds, the chicken and the zebra finch. As of 2022 the genomes of 542 species of birds had been completed. At least one genome has been sequenced from every order.[61][62] These include at least one species in about 90% of extant avian families (218 out of 236 families recognised by the Howard and Moore Checklist).[63]
Being able to sequence and compare whole genomes gives researchers many types of information, about genes, the DNA that regulates the genes, and their evolutionary history. This has led to reconsideration of some of the classifications that were based solely on the identification of protein-coding genes. Waterbirds such as pelicans and flamingos, for example, may have in common specific adaptations suited to their environment that were developed independently.[61][62]

Write & Read to Earn with BULB

Learn More

Enjoy this blog? Subscribe to jookeerr0


No comments yet.
Most relevant comments are displayed, so some may have been filtered out.